
THE ALEXANDER POLYNOMIAL

NANCY SCHERICH

1. Introduction

The Alexander polynomial is a well understood classical knot invari-
ant with interesting symmetry properties and recent applications in
knot Floer homology [8, 7]. There are many di! erent ways to com-
pute the Alexander polynomial, some involving algebraic techniques
and others more geometric or combinatorial approaches. This is an in-
teresting example of how di! erent types of mathematics can be used to
describe the same result. While experts understand the relationships
between di! erent fields and methods of computation, the subtleties are
often omitted in the literature. This paper describes four routes to the
Alexander polynomial with the intent to explicate these subtleties and
bring clarity to this intersection of subjects.

The format of this paper is first to describe Alexander’s original defi-
nition of the Alexander polynomial, a purely algebraic definition. Then
a detailed construction of Seifert surfaces and the infinite cyclic cover of
a knot complement will be given. Next, we will show that the Alexan-
der polynomial can be calculated using a Seifert Matrix, which is still an
algebraic result but has a more geometric flavor. While Seifert surfaces
have rich content useful as a basis for proofs, perhaps the easiest way to
compute the Alexander polynomial is using Conway’s method of Skein
relations. This method is very combinatorial and surprisingly simple.
The next section of the paper proves that the Alexander polynomial
is the unique knot invariant satisfying the Skein relations and initial
condition. Lastly, a brief introduction to grid diagrams will lead to
the final description of the Alexander polynomial via the Minesweeper
matrix.

Notation: " = Z < t > is the ring of Laurent polynomials.
# K = # (K ) is the Alexander polynomial for K .
All knots referred to in this paper are assumed to be tame knots.

1.1. Background.

Definition 1.1. A knot is an embedding of S1 in R3 (or in S3).
1
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Definition 1.2. An ambient isotopy is a continuous map from [0, 1]!
R3 onto R3 that is a homeomorphism at every level.

Definition 1.3. Two knots are equivalent if there exists and ambient
isotopy mapping one knot onto the other.

Definition 1.4. A knot invariant is a function on the set of all knots
that assigns equivalent knots the same output.

Definition 1.5. The knot group of a knot is the fundamental group
of the knot compliment in R3, or in S3.

Theorem 1.6. (Wirtinger Presentation, [5]) The knot group for any
knot has a Þnite presentation(b1, á á á, bk : r 1, á á árk) where each relator
r i is of the form bj blb! 1

n b! 1
l .

The Wirtinger presentation arises by taking loops that pass once
under each strand of the knot as generators and the relators occur at
the crossings.

Figure 1. Wirtinger crossing relations

2. Alexander’s original definition through the

Alexander module

James Waddell Alexander II developed the Alexander polynomial in
1923, which was the first knot invariant in the form of a polynomial.
While this polynomial has surprising qualities, Alexander’s original de-
velopment is quite natural. Defining knot equivalence using ambient
isotopies immediately gives the knot group as a knot invariant. This
section will define the Alexander module as a specific quotient space
of derived subgroups of the knot group and construct a knot invariant
from this space.

Let K be a knot and X = S3 " K . Denote G = ! 1(X ).

Proposition 2.1. H1(X ) #=< t > .
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Proof. AWirtinger presentation of G is (b1, á á á, bk : r 1, á á á, rk! 1) where
each r i is of the form bj blb! 1

n b! 1
l . So there exists a homomorphism

" : G $ < t > , where < t > is the infinite cyclic free abelian group,
given by " (bi ) = t. This map is well defined on G since " (r i ) = 1 for
each relator r i . Now G" is the derived subgroup of G. Since < t > is
abelian, then " factors thru to induce a map "̄ on G/G ".

The relator bj blb! 1
n b! 1

l gives that bj is conjugate to bn . Following the
relators around the entire knot gives that each generator is conjugate to
every other generator. Conjugacy classes are preserved by homomor-
phisms, so the image of "̄ is generated by some b1G". So "̄ (b1G") = t.
This mapping is an isomorphism by existence of the inverse function
t i $ bi

1G". Hence G/G " #=< t > .
By the Hurewicz theorem, H1(S3 " K ) #= ! 1(S3 " K )/ [! 1(S3 "

K ), ! 1(S3 " K )], So H1(S3 " K ) #=< t > . !

Proposition 2.2. For any knots K and L, denote G = ! 1(S3 " K )
and H = ! 1(S3 " L). If G #= H then G"/G "" #= H "/H "". Moreover,
G"/G "" is an invariant of the knot group.

Proof. Let f : G $ H be an isomorphism. If xyx! 1y! 1 % G" then
f (xyx! 1y! 1) = f (x)f (y)f (x)! 1f (y)! 1 %H ". Similarly, if zwz! 1w! 1 %
H " then f ! 1(zwz! 1w! 1) = f ! 1(z)f ! 1(w)f ! 1(z! 1)f ! 1(w! 1) %G". Sof (G") =
H " giving G" #= H ". A similar proof gives that G"" #= H "", thus giving
that G"/G "" #= H "/H "". !

Corollary 2.3. G"/G "" is a knot invariant.

Proof. G"/G "" is an invariant of the knot group, which is a knot invari-
ant. !

Proposition 2.4. G"/G "" is a " -module.

Proof. By Proposition 2.1, G/G " #=< t > . This structure is used to
define a " action on G"/G "". Let g %G such that gG" = tk . For # %G"

define tk# = g#g! 1 % G". However, if hG" = tk then tk# = h#h! 1.
Since gG" = hG" then g! 1h %G". So,

g#g! 1(h#h! 1)! 1 = g#g! 1(h#! 1h! 1)

= g#g! 1(h#! 1h! 1)gg! 1

= g#g! 1h#! 1(g! 1h)! 1g! 1 %G""

Hence, g#g! 1G"" = h#h! 1G"", giving a well defined " action on
G"/G "". !

Definition 2.5. The Alexander module of a knot K is G"/G "", de-
noted AK .
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Definition 2.6. Let M = ($1, á á á, $t : r 1, á á á, rs) be a finitely pre-
sented Module over ring R. A presentation matrix for M corre-
sponding to the given presentation is P = [pij ] where r i =

! t
k=1 pik $k ,

for some pij %R.

Definition 2.7. Let M be a module over R with an s ! r presentation
matrix P, the Order Ideal of M is the ideal in R generated by the
r ! r minor matrices of P . If s < r then the order ideal of M is the
zero ideal.

Definition 2.8. The Alexander polynomial of K , denoted # K , is a
generator of the order ideal of a presentation matrix for the Alexander
module.

Note 2.9. # k is defined up to multiplication by a unit in " , i.e. mul-
tiplication by ± tn .

It will later be shown, in Theorem 3.11, that the Alexander module
has a square presentation matrix. The order ideal of this presentation
matrix is principle, thus the Alexander polynomial is well defined.

Theorem 2.10. The Alexander polynomial is a knot invariant.

To prove this theorem, the following definition and theorem are re-
quired.

Definition 2.11. [5] Two matrices are equivalent if one can be ob-
tained from the other by a finite sequence of the following operations
and their inverse operations:

(1) Permute rows or columns
(2) Adjoin a new row of zeroes
(3) Add a multiple of a row (or column) to any other row (or col-

umn)
(4) Multiply a row (or column) by a unit
(5) Replace the m ! n matrix M by the bordered(m +1) ! (n +1)

matrix :

"

#
#
$

M 0
...
0

0 á á á0 1

%

&
&
' .

Theorem 2.12. ( [5], [13]) Any two presentation matrices for a Þnitely
presented module are equivalent.

Proof of Theorem 2.10. The Alexander polynomial is defined as a gen-
erator of the order ideal of a presentation matrix of the Alexander
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module. Corollary 2.3 shows that the Alexander module is a knot in-
variant. So, it remains to show that the Alexander polynomial is an
invariant of the Alexander module.

By Theorem 2.12, to show the Alexander polynomial is an invariant
of the Alexander module AK , it su$ ces to show that the same order
ideal is generated by equivalent presentation matrices for AK . To do
this, consider the e! ect of the operations in definition 2.11 on the square
minor determinants of equivalent matrices.

(1) Permuting rows or columns changes the sign of the determinant.
(2) Adjoining a row of zeroes creates new minor matrices with zero

determinants.
(3) Adding a multiple of a row (or column) to any other row (or

column) does not change the determinant.
(4) All units in " are of the form ± tk for k %Z. Multiplying a row

or column by ± tk corresponds to multiplying the determinant
by ± tk .

(5) Bordering a matrix M creates new minor matrices with zero
determinant and the minors 1 ádet(M̃ ) for M̃ minors of M .

The same order ideals will be generated by equivalent matrices since
the minor determinants are only changed by ± 1 or ± tk , which are units
in " . Therefore the Alexander polynomial is completely determined by
equivalent matrices, and hence is an invariant of AK . !

3. Presentation matrices

One di$ culty with Alexander’s original definition is that derived
subgroups are generally complicated and hard to describe with a finite
presentation. This leaves the Alexander module and Alexander poly-
nomial as intangible abstract objects. However, if X is a knot comple-
ment, with fundamental group G, in Proposition 2.1, it was shown that
H1(X ) =< t > . So from a topological standpoint, if X̃ is the maxi-
mal abelian cover of X then H1(X̃ ) #= G"/G "" is the Alexander module.
Moreover, X̃ is the cover defined by p#(! 1(X̃, x̃)) = G" " ! 1(X, x ).
Thus ! 1(X̃ ) #= G" and H1(X̃ ) #= G"/G "". So, the homology of a max-
imal abelian cover of the knot complement gives an interpretation of
the Alexander module. This turns out to be a lucrative approach and
gives rise to our second description of the Alexander polynomial via
the Seifert matrix. This next section develops the Seifert matrix using
Seifert surfaces and a description of X̃ as an infinite cyclic cover of the
knot complement.

3.1. Seifert Surfaces.
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Definition 3.1. A subset X & Y is said to be bicollared in Y if there
exists an embedding h : X ! [" 1, 1] $ Y such that h(x, 0) = x when
x %X . The map or its image is then said to be the bicollar.

Definition 3.2. A Seifert Surface for a knot, or link, K & S3 is a
connected, bicollard, compact manifold M & S3 with %M = K .

Note 3.3. A bicollared surface is always orientable as a subset of S3.

Theorem 3.4. Every knot and link admits a Seifert surface.

Proof. Fix an orientation of the knot or link. Smooth out the crossings
by following Seifert’s algorithm shown in Figure 2. After this smooth-
ing, the diagram will be several simple closed oriented curves called
Seifert Circles.

Figure 2. crossing smoothing

Individually, each Seifert circle bounds a disk the plane. If any Seifert
circles are nested, pull the circles out of the plane into a three dimen-
sional ”stack”. Thus the Seifert circles are disjoint, oriented and each
bounds a disk in R3. Each disk is bicollared and can be assigned a +
and " side by the convention that the + side has a counterclockwise
boundary orientation. To create the surface, attach a half-twisted strip
to each position where a crossing was smoothed. The half twist crosses
in the same manner of the original crossing, leaving the boundary of
the surface to be the original knot, or link.

Figure 3. Half-twisted strip with and without the bicollar

An example construction of a Seifert surface for the figure 8 knot is
shown in Figure 4. This surface is orientable and comes equipped with
a bicollar, but the surface drawn does not show the bicollar.

Now, if the link is disconnected, then following this algorithm will
leave a disconnected surface. To remedy this, connect the disjoint
surfaces by a hollow pipe that preserves the bicollar but does not change
the boundary of the surface, see Figure 5.
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Figure 4. Construction of a Seifert surface

Figure 5. Connecting disjoint surfaces with a hollow pipe.

!

Note 3.5. A Seifert surface depends on the choice of orientation and
projection of the knot.

As a consequence of this construction, we can define the genus of
a knot to be the minimum genus of any Seifert surface for the knot.
This is a knot invariant that is easily defined, but di$ cult to compute.
Interestingly, the Alexander polynomial gives a nice result about the
genus of a knot in Corollary 3.29.

Remark 3.6. All punctured compact orientable manifolds with con-
nected boundary and genus g are homeomorphic to a disk with 2g
”handles” attached. These handles may be twisted and intertwined.

Let M be such a surface. Up to homotopy type,
$

M is a wedge of 2g

circles,
$

M #= ' 2g
i =1 S1. So H1(

$
M ) = H1('

2g
i =1 S1) = Z2g. Then a basis for

H1(
$

M ) can be found by collecting the 2g loops that pass through the
disk and one handle, see Figure 6.

3.2. Seifert Matrix

The following basic properties of Homology theory are accepted with-
out proof.

For any topological space W ,
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Figure 6. Generators for H1(
$

M )

¥ Each loop f : S1 $ W represents an element [f ] %H1(W ).
¥ For every a %H1(W ), there exists a loop f : S1 $ W such that
[f ] = a %H1(W ).

¥ If two loops f, g : S1 $ W are freely homotopic, then [f ] =
[g] %H1(W ).

Definition 3.7. Let J and K be two disjoint oriented knots, or links.
For each point where J crosses under K in the projection of J and K ,
assign a ± 1 following Figure 7. Then the linking number of J and K ,
donated lk(J, K ), is the sum of the assigned numbers over all crossings.

Figure 7. Crossing assignment for linking number.

We may extend this definition to homology classes. That is, if
[J ], [K ] %H1(W ), then lk([J ], [K ]) =lk(J, K ).

Proposition 3.8. ([10] pg 135-136) The linking number has the fol-
lowing properties:

(1) If there are homotopiesJt : S1 $ R3 and K t : S1 $ R3 such
that Im(Jt)( Im(K t) = ) for all t %[0, 1] then lk(J0, K 0) =lk(J1, K 1).

(2) lk(J, K ) =lk(K, J ).
(3) lk(J, K ) = [J ] %H1(S3 " K )
(4) lk is bilinear, in the sense that lk([J ]+[J "], [K ]) =lk([J ], [K ])+lk([J "], [K ]).

For the following definitions, let
$

M be the interior of a Seifert surface

for a knot, and N :
$

M ! (" 1, 1) $ S3 an open bicollar for M .
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Definition 3.9. A Seifert Form is a function f : H1(
$

M ) ! H1(
$

M ) $
Z given by f ([x], [y]) = lk(x, N (y, 1

2)).

Note that Definition 3.9 is well defined by Proposition 3.8 (1).

Definition 3.10. A Seifert Matrix is a 2g! 2g matrix Vij = f (ei , ej )

where ei ’s are basis for H1(
$

M ), f is a Seifert form and g is the genus
of the Seifert Surface M .

Theorem 3.11. If V is the Seifert matrix for a knot k in S3, then
V T " tV is a presentation matrix for Ak.

The Seifert surface, and ultimately the Seifert matrix, is a geometric
object. Theorem 3.11 relates the Alexander polynomial, a purely alge-
braic object, with a geometric object. In order to prove this theorem
we must first understand the algebraic structure of the Seifert surface.
Finally to do this, we need to understand the algebraic structure of the
infinite cyclic cover of the knot compliment. The next section describes
this process.

3.3. Infinite Cyclic Cover of a Knot Complement.
This construction follows Rolfsen [10].

The infinite cyclic cover of a knot complement is a complicated space
whose first homology group is the Alexander module of the knot. To
give better intuition of the the space, this detailed construction will be
accompanied by schematic diagrams.

Let M be a Seifert Surface for knot K . By definition, M is bicollared,

so there exists an open bicollar N :
$

M ! (" 1, 1) $ S3, where
$

M =

M " K the interior of M . Thus
$

M = N (
$

M ! 0). We use the following
notation:

N = N (
$

M ! (" 1, 1)).

N + = N (
$

M ! (0, 1))), the positive side of N.

N ! = N (
$

M ! (" 1, 0), the negative side of N.
N ± = N ! *̇ N + .
Y = S3 " M .
X = S3 " K .

Notice that N ( Y = N ± and that X is the union of two open sets Y
and N .

An infinite cyclic cover X̃ for X is constructed as follows. Form two
disjoint unions

Y ! Z = *̇ k%ZYk
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N ! Z = *̇ k%ZNk

where Yk = Y ! { k} is a copy of Y and similarly for Nk . Here, Z has
the discrete topology.

The inclusion of N ± into N naturally extends to an inclusion kN :
N ± ! Z $ N ! Z. We also have the inclusion of N ± into Y . Define
b : N ± ! Z $ Y ! Z by

b(x, k) =
(

(x, k + 1) x %N +

(x, k) x %N !

The map b is continuous because N ± has the discrete topology.

Figure 8. Schematic diagram of Yi ’s. The ”gap” be-

tween the Yi ’s is a copy of
$

M .

Figure 9. Schematic diagram of Ni ’s

So the N ±
i ’s are like pieces of tape used to paste together copies of

the complement of the surface and copies of the surface without the
knot.

Define X̃ as the push out as in Figure 11. This induces maps j Y :
Y ! Z $ X̃ and j N : N ! Z $ X̃ and the push out has the following
universal properties:

(1) j Y +b= j N +kN
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Figure 10. Schematic diagram of X̃ . The ”gap” be-

tween the Yi ’s is filled by the copies of
$

M in the Ni ’s,
leaving a path connected space.

Figure 11

(2) For any space V and maps g : N ! Z $ V and f : Y ! Z $ V
such that b + f = kN + g, there exists a unique induced map
h : X̃ $ V with the property that h + j y = f and h + j N = g.

Figure 12

The space X̃ is constructed as a quotient space of (N ! Z)*̇ (Y ! Z)
with the equivalence relation that kN (x, k) # b(x, k) for all (x, k) %
(N ! *̇ N + ) ! Z. There are more natural inclusion maps hN : N $ X ,
hY : Y $ X and projection maps pN : N ! Z $ N and pY : Y ! Z $ Y .
Figure 13 is a diagram relating these maps.

Proposition 3.12. The map j Y embedsY ! Z as an open subset of
X̃ . The map j N embedsN ! Z as an open subset of̃X .

Proof. Let ! be the quotient projection from U := (N ! Z)*̇ (Y ! Z)
onto X̃ . It su$ ces to show that both ! ! 1+j Y (Y ! Z) and ! ! 1+j N (N ! Z)
are open in U.
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First note that j N and j Y are open maps by the construction of X̃ .
Now N ± is an open subset of N , so kN embeds N ± ! Z as an open set
in N ! Z. Similarly, b embeds N + ! { k} in Y ! { k +1} and N ! ! { k}
in Y ! { k} . Since N ± is an open subset of Y , then b embeds N ± ! Z
as an open set in Y ! Z. So,

! ! 1 + j N (N ! Z) = b(N ± ! Z)*̇ (N ! Z)
op
& U

! ! 1 + j Y (Y ! Z) = kN (N ± ! Z)*̇ (Y ! Z)
op
& U.

!

Proposition 3.13. The maps pY + hY and pN + hN induce a map
p : X̃ $ X .

Figure 13

Proof. By the universal property of the push out X̃ , it su$ ces to show
that hY +pY +b= hN +pN +kN . Consider cases on (x, k) %(N ! *̇ N + )! Z.

¥ Case 1: x %N + . Then

hY +pY +b(x, k) = hY +pY (x, k + 1) = hY (x) = x

= hN (x) = hN +pN (x, k) = hN +pN +kN (x, k).
¥ Case 2: x %N ! . Then clearly

hY +pY +b(x, k) = hY +pY (x, k) = hY (x) = x

= hN (x) = hN +pN (x, k) = hN +pN +kN (x, k).
So hY +pY +b(x, k) = hN +pN +kN (x, k) for all (x, k) %(N ! *̇ N + ) ! Z.

!

Next, define shifting maps sN : N ! Z $ N ! Z and sY : Y ! Z $
Y ! Z by sN (x, k) = (x, k + 1) and sY (x, k) = (x, k + 1).

Proposition 3.14. The mapsj N + sN and j Y + sY induce a map& :
X̃ $ X̃ .
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Figure 14

Proof. By the universal property of the push out X̃ , it su$ ces to show
that j N +sN +kN = j Y +sY +b. Consider cases on (x, k) %(N ! *̇ N + )! Z.

¥ Case 1: x %N + . Then

j Y +sY +b(x, k) = j Y +sY (x, k + 1) = j Y (x, k + 2) = j Y +b(x, k + 1)

= j N +kN (x, k + 1) = j N (x, k + 1) = j N +sN (x, k)

= j N +sN +kN (x, k).

¥ Case 2: x %N ! . Then similarly

j Y +sY +b(x, k) = j Y +sY (x, k) = j Y (x, k + 1) = j Y +b(x, k + 1)

= j N +sN (x, k) = j N +sN +kN (x, k)

So j N +sN +kN (x, k) = j Y +sY +b(x, k) for all (x, k) %(N ! *̇ N + ) ! Z.
!

Remark 3.15. A similar construction using shifting maps that reduce
the indices by 1 would induce a map &! 1 : X̃ $ X̃ such that &! 1(x, k) =
(x, k " 1). Thus & is a homeomorphism on X̃ .

Proposition 3.16. p +&= p.

Proof. By definition, p is the unique induced map such that p + j Y =
hY +pY and p+j N = hN +pN . So, it su$ ces to show that p+&+j Y = hY +pY

and p +&+ j N = hN +pN .

p +&+ j N = p + j N +sN (by definition of &)

= hN +pN +sN (by definition of p)

= hN +pN (because pN = pN +sN )

Similarly,

p +&+ j Y = p + j Y +sY (by definition of &)

= hY +pY +sY (by definition of p)

= hY +pY (because pY = pY +sY )
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!

Lemma 3.17. p is a covering projection.

Proof. Since X = N * Y , it su$ ces to show that N and Y are evenly
covered by p.

p! 1(N ) = j N +p! 1
N +h! 1

N (N ) = j N +p! 1
N (N )

= j N (N ! Z).

Proposition 3.12, proved that j N (N ! Z) is an embedded subset of X̃ .
Claim: For a fixed k, p|j N (N & { k} ) is a homeomorphism onto N .
Let S : N $ N ! { k} be the slice map S(n) = (n, k). Then for any

j N (n, k) %X̃ ,

j N +S +p + j N (n, k) = j N +S +hN +pN (n, k) = j N +S(n) = j N (n, k),

which gives j N +S is the inverse map to p|j N (N & { k} ) . So p|j N (N & { k} ) is a
homeomorphism onto N .

This gives that the fiber over N is *̇ k%Zj N (N ! { k} ).
An analogous proof gives that the fiber over Y is *̇ k%Zj Y (Y ! { k} ).

!

Lemma 3.18. Aut(p) =< & > .

Proof. By Remark 3.15, & is a homeomorphism on X̃ and by proposi-
tion 3.16, p +&= p. Thus & %Aut(p) and so < & > & Aut(p).

Let ' %Aut(p), then by definition p = ' + p. Let ỹ = j Y (y, k) %
j Y (Y ! Z) & X̃ . Then p(y) %Y & X . We know that for all x %Y & X ,
p! 1(x) = j Y (x ! Z). So p! 1 +p(ỹ) = j Y (p(y) ! Z). Also since p = ' +p,
then ' (ỹ) % p! 1 + p(ỹ) so ' (ỹ) = (p(y), m) for some m. However,
&(j Y (Y ! { k} ) = j Y (Y ! { k + 1} ), so &m! k(ỹ) = (p(y), m) = ' (ỹ). By
uniqueness of lifts, ' = &m! k .

If ỹ = j N (y, k) % j N (n ! Z), then a similar argument shows that
' = &m! k . Since X̃ = j N (N ! Z) * j Y (Y ! Z), then ' %< & > giving
that Aut(p) &< & > . !

Note 3.19. By the construction of X̃ , &has infinite order, thus Aut(p)
is infinite cyclic. This defines a t-action on X̃ by tk(x̃) = &k(x̃), by
viewing < t > as the infinite cyclic group. This action acts as a shift
within X̃ .

Remark 3.20. Now p is called a regular coveringbecause Aut(p) =<
& > acts transitively on p! 1(x) for all x %X . A consequence of regular
coverings gives that p#(! 1(X̃ )) " ! 1(X ) and ! 1(X )/p #! 1(X̃ ) =Aut(p).

Theorem 3.21. H1(X̃ ) is the Alexander module ofK .
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Proof. Let G = ! 1(X ), then by definition the Alexander module AK =
G"/G "". By Lemma 3.18, Aut(p) is infinite cyclic and by Remark 3.20
G/p #! 1(X̃ ) =Aut(p). Also, by Proposition 2.1, G/G " = H1(X ) is
infinite cyclic. Thus G/G " #= G/p #! 1(X̃ ) which gives G" #= p#! 1(X̃ ).
Since X̃ is path connected then p# is injective which gives that ! 1(X̃ ) #=
p#(! 1(X̃ )) #= G". Thus, H1(X̃ ) #= ! 1(X̃ )/ (! 1(X̃ ))" #= G"/G "" = AK . !

Recall that the purpose of the construction of the infinite cyclic cover
is to understand the relationship between # K and the Seifert matrix,
with the ultimate goal to prove Theorem 3.11. Theorem 3.21 is the
bridge between these two topics. The next series of results gather
information about H1(X̃ ) building to a proof of Theorem 3.11.

Lemma 3.22. [10] Let M be a Seifert surface with[a1], ..., [a2g] is a

basis forH1(
$

M ) found in remark 3.6. Then a basis[$1], á á á, [$2g] for
H1(Y ) can be found such that lk($i , aj ) = ( i,j .

Proof. As described in remark 3.6, each punctured compact orientable
manifold with connected boundary and genus g is homeomorphic to
a disk with 2g ”handles” attached. The basis elements ai ’s are loops
that run once through each handle. Figure 15 shows the claimed basis
elements $i ’s. Clearly $i ’s have the property lk($i , aj ) = ( i,j .

Figure 15. choosing $"s

To show that the [$i ]’s generate H1(Y ), it su$ ces to show that each
handle requires exactly one generating loop element.

First, we will show that each band can have at most one genera-
tor. Consider a crossing and the Wirtinger presentation of the surface
complement.

Figure 16 gives a relation on the generators $) ! 1$! 1# = 1 in ! 1(S3"
M ), but H1(Y ) = ! (S3 " M )ab is abelian, so ) = # in H1(Y ). This
can be interpreted as the generator of the homology can slide under a
di! erent handle. Thus each handle requires at most one generator.
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Figure 16. Wirtinger presentation for a basic crossing

To show each handle has at least one generator, it su$ ces to show
that there is no relation between the generators. By a Seifert Van Kam-
pen theorem, the Wirtinger presentation is a presentation for the fun-
damental group of the complement of the knot, and similarly the com-
plement of the Seifert surface. There exists a map from ! 1(Y ) $ Z2g by
sending all degenerate generators to the only needed generators. Since
H1(Y ) is the abelianizaion of ! 1(Y ) then there is also a homomorphism
from H1(Y ) $ Z2g. If there was a linear dependence in H1(Y ) then
there would be a linear dependence in Z2g, which there is not. So the
[$i ]’s are linearly independent and actually form a basis for H1(Y ).

!

Define oY : Y $ X̃ as the following composition.

Y *$ Y ! { 0} *$ Y ! Z
j Y$ X̃

This map oY gives a way to view elements of Y in the zeroth level
of X̃ . Now, for any a %H1(Y ) define ã %X̃ as ã = oY #(a).

Lemma 3.23. H1(X̃ ) is generated as a" module by{ $̃i , i = i á á á2g} .

Proof. Let Z = j Y (Y ! { 0} ) * j N (N ! { " 1, 0} ) and so X̃ = * k%Z&k(Z ).

N + , N ! are constructed by thickening
$

M by the bicollar, N . Thus
N + j N acts as a deformation of Z into j Y (Y ! { 0} ). This gives Z the
homotopy type of Y . By Lemma 3.22, H1(Y ) is generated by { $i }

2g
i =1 .

Since Z and Y have the same homotopy type, then H1(Z ) is generated
by { $̃i }

2g
i =1 .

Let C : S1 $ X̃ be a loop in X̃ . Now { &k(Z )} k%Z is an open cover
for X̃ , so as a compact set, C is contained in some minimal &i (Z ) and
maximal &j (Z ). Define the span(C) = |j " i |.

We induct on span(C) = k.
Base Case: k = 0. Then C & &i (Z ) and so &! i (C) & Z . H1(Z )

generated by { $̃i }
2g
i =1 , so [&! i (C)] =

!
ci $̃ for some ci % Z. Thus
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Figure 17. Cycle C in H1(X̃ )

[C] =
!

[&i (ci $̃)] =
!

ci [&i ($̃)] =
!

ci t i $̃. Therfore [C] is a " linear
combination ($̃ i )

2g
i = i .

Inductive Step: Assume that all loops X̃ with span < k are " lin-
ear combination ($̃ i )

2g
i = i . Let C be a loop in X̃ with span(C) = k.

Then, S1 = * i + k
j = i C

! 1(&j (Z )) and { C! 1(&j (Z ))} i + k
j = i is an open cover

for S1. S1 is a compact metric space, so by the Lesbegue Number
Lemma, there exists a Þnite subset P of S1 such that each compo-
nent of S1 " P is contained one element of the cover. Assign to each
partitioned component an index integer j in [i, i + k] such that the
image of the component is contained in C! 1(&j (Z )). Take a refine-
ment of the partition so that no two consecutive components have
the same index. Now, by definition of Z and the fact that C is con-
nected, two consecutive components have index that di! er by 1. Since
&j (Z ) ( &j +1 (Z ) = &j (j N (N ! { 0} ) = j N (Nj ), then the images of the
partition points lie in j N (Nj ) for respective j .

Let # be a component with index i +k, and denote the partition end
points of # by t, t " % S1. j N (Ni + k) is path connected , so let ĉ be a
path in j N (Ni + k) from C(t") to C(t). Using the bicollar, j ! 1

N (ĉ) can be
slid into N ! , and so ĉ can be slid to ĉ! & j N (N !

i + k! 1) & &i + k! 1(Z ), as
shown in Figure 18.

This ”sliding” is a homotopy of ĉ to ĉ! , so the loop bounded by this
homotopy is trivial. Also, the loop C(#) áĉ lies entirely in &i + k(Z ) and
is a t i + k shift of some loop c0 in Z . In essence, this process ”caps o! ” a
component with index i + k and shows it is a shift of a loop in Z . This
leaves [C] as a product of three loops: one which is a shift of a loop in
Z , another which is homotopically trivial, and the last which has one
less component in &i + k(Z ). This is schematically shown in figure 19.

By finiteness of the partition, there are finitely many components
with index i + k. Repeat this process for every component with index
i + k. This gives a representation [C] =

!
t i + k [cj

0] + [c"] where c" is a
loop with span(c") = k" 1 and cj

0 are loops in Z . But, [cj
o] =

!
#j

m $̃m %



18 NANCY SCHERICH

Figure 18. Sliding ĉ into j N (N !
i + k)

Figure 19. C as a product of loops

H1(Z ) for some #j
m %Z. By the induction hypothesis [c"] is a " linear

combination of ($̃ i )
2g
i = i . Thus C is a " linear combination of ($i )

2g
i = i .

This finally gives that H1(X̃ ) is " generated by ($i )
2g
i = i . !

Define the maps s± :
$

M $
$

M ! (" 1, 1) by s± (x) = (x, ± 1
2). Note that

the bicollar N acts as a homotopy between s+ and s! , so the maps s+

and s! are freely homotopic.

Define i + , :
$

M $ X̃ by the following composition:

$
M

s+

$
$

M ! {
1

2
}

N
*$ N + *$ Y *$ Y ! { 0} *$ Y ! Z

j Y$ X̃.

Similarly, define i ! , :
$

M $ X̃ by the following composition:

$
M

s!

$
$

M ! { "
1

2
}

N
*$ N ! *$ N *$ N ! { 0} *$ N ! Z

j N$ X̃.

So, for any a % H1(
$

M ) we can define associated a+ , a! % H1(X̃ ) by
a+ = i +

# (a) and a! = i !
# (a).

Lemma 3.24. For every a %H1(
$

M ), ta+ = a! in H1(X̃ ).

Proof. It su$ ces to show that &i+ , i ! are freely homotopic as maps

from
$

M to X̃ , as then ta+ = [&i+ (a)] = [i ! (a)] = a! in H1(X̃ ).
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Let x %
$

M , then

&i+ (x) = &+ j Y +N +s+ (x) = &+ j Y (N (x,
1

2
), 0)

= j Y (N (x,
1

2
), 1) = j Y +b(N (x,

1

2
), 0)

= j N +kN (N (x,
1

2
), 0) = j N (N (x,

1

2
), 0)

= j N +N +s+ (x)

This shows that &i+ = j N +N +s+ . We also know that i ! = j N +N +s! .
But since s+ , s! , we get the desired result

&i+ = j N +N +s+ , j N +N +s! = i ! .

!

For the remainder of this section, we use the following notation con-
ventions.

Let (ai )
2g
i =1 be generators for H1(

$
M ) found by the algorithm in Re-

mark 3.6, and ($̃ i )
2g
i = i be generators for H1(X̃ ) corresponding to gener-

ators ($i )
2g
i =1 for H1(Y ) found by Lemma 3.22. Define âi as a loop in

$
M such that [âi ] = ai %H1(

$
M ). Define â±

i = N (âi , ± 1
2).

Lemma 3.25. H1(X̃ ) has deÞning relationsta+
i = a!

i as a " module
generated by($̃ i )

2g
i = i .

Proof. Using the notation in the proof of Lemma 3.23, X̃ = * k%Z&k(Z )
glued along &j (Z ) ( &j +1 (Z ) = j N (Nj ). By Lemma 3.24, the Mayer-
Vietoris relations for X̃ as copies of Z with intersection as copies of N
are tk+1 a+

i = tka!
i for all k %Z and i %1, á á á, 2g. But, since H1(X̃ ) is

a " module, then each of the relators is a unit multiple of the specific
relators ta+

i = a!
i for i = 1 á á á, 2g.

!

Proposition 3.26. For any [b] %H1(Ỹ ), [b] =
!

bj $j wherebj =lk(b,âj ).

Proof. H1(Ỹ ) is generated by ($i )
2g
i =1 by Lemma 3.22, so [b] =

!
j bj $j .

The generators have the property that lk($j , âi ) = ( ij . By Proposition
3.8, lk is bilinear, so

lk(b,âi ) = lk(
)

j

bj $j , âi ) =
)

j

bj lk($j , âi ) =
)

j

bj ( ij = bj .

!
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This completes the background information needed to prove Theo-
rem 3.11.

Theoreom 3.11 If V is the Seifert matrix for a knot in S3, then
V T " tV is an Alexander Matrix for the knot.

Proof. Let K be a knot in S3, M be a Seifert surface for K with
open bicollar N and Seifert form f . Let V the Seifert matrix for K

corresponding to a basis a1, ..., a2g for H1(
$

M ) found by the algorithm
in Remark 3.6. To show V T " tV is an Alexander Matrix, it su$ ces to
show that V T " tV is a presentation matrix for H1(X̃ ), the Alexander
module for K .

Now, Lemma 3.22 gives that ($i )
2g
i =1 is a basis for H1(X ) such that

lk(ai , $j ) = ( i,j . Also, Lemma 3.23 gives that H1(X̃ ) can be presented
as a module over " with generators ($̃ i )

2g
i =1 . Viewing X̃ as the union

X̃ = * k%Z&k(Z ), Lemma 3.24 shows that the defining Mayer Vietoris
relations are a!

i = ta+
i for i = 1, á á á, 2g.

So, by definition of V , Vij = f (ai , aj ) = lk(âi , â+
j ).

Now by Proposition 3.26, [â!
i ] =

!
j lk(â

!
i , âj )$j since â!

i & Y . By

definition of a!
i %H1(X̃ ),

a!
i = i !

# ([âi ]) = [â!
i ] = [

)

j

lk(â!
i , âj )$j ]

=
)

lk(â!
i , âj )[$j ] =

)
lk(â!

i , âj )$̃ j .

But, since â!
i is homotopic to âi and âj is homotopic to â+

j with disjoint
homotopies, then by Proposition 3.8, lk(a!

i , aj ) = lk(ai , a+
j ) = vi,j . So

a!
i =

)
Vij $̃ j

Similarly,

a+
i =

)
lk(â+

i , âj )$̃ j =
)

lk(âj , â+
i )$̃ j =

)
Vji $̃ j .

Now imposing that a!
i = ta+

i we get the following:

)

j

vi,j $j = t
)

j

vj,i $j

)

j

[vi,j " tvj,i ]$j = 0

This interpretation of the Mayer-Vietoris relations shows that V "
tV T is a presentation matrix for Ak . Now, by interchanging the + and
" sides of the bicollar on M , the new Seifert matrix is the transpose of
the old one. This gives that V T " tV is a presentation matrix for Ak .
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This proof is due to Rolfsen [10].
!

Note 3.27. V T " tV is a square matrix presentation matrix for Ak .
Thus there is a well defined generator of the order ideal of Ak , namely
the Alexander polynomial.

To calculate the Alexander polynomial using the Seifert matrix is
very di$ cult, in the sense that one needs to find generators of the ho-
mology group of the Seifert surface. While there is an algorithm to do
this described in Remark 3.6, this assumes that you know how to view
the surface as a disk with handles, which is indeed di$ cult. However,
this description of the Alexander polynomial is very useful for proving
properties of the polynomial. In the next section, the Alexander poly-
nomial is proved to satisfy the Skein relations using only the Seifert
matrix formulation. In addition, the following two beautiful results
have simple proofs using the Seifert matrix.

Corollary 3.28. # (t) = ± tk# (t ! 1) for somek.

Proof.

(V T " tV )T = V " tV T = t(V T " t! 1V )

det((V T " tV )T ) = det(tI(V T " t! 1V ))

det(V T " tV ) = ± tk det(V T " t! 1V )

# (t) = ± tk# (t ! 1).

!

Corollary 3.29. DeÞne the degree of a Laurent polynomial to be the
di! erence of the highest and lowest exponents with nonzero coe" cients
and g to be the genus of the knot. Then, degree(# (t)) - 2g.

Proof. For a given knot and Seifert surface with genus g, the Seifert
matrix is a 2g by 2g matrix with integer entries. Each entry of V " tV T

is a linear term, so degree(# (t)) = degree(det(V " tV T )) - 2g. !

For example, the 51 and 71 knots are shown in Figure 20. The
Alexander polynomials of these knots were found in Rolfsen’s knot
index [10].

# 51(t) = t2 + t ! 2 " t " t ! 1 + 1 which has degree 4. So the genus of
51 is at least 2.

# 71(t) = t3 + t ! 3 " t2 " t ! 2 + t + t ! 1 " 1 which has degree 6. So the
genus of 71 is at least 3.
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Figure 20

The next results give a slightly alternate form of the Seifert matrix
description of the Alexander polynomial in preparation for the Conway
and the Skein relation section.

Proposition 3.30. If R is a ring, then for any M %Mn& n(R),

± tn det(tM " t! 1M T ) = det(M T " t2M ).

Proof. Let R be a ring and M %Mn& n(R). Let I be the identity matrix
in Mn& n(R). Then

tI(tM " t! 1M T ) = " (M " t2M T ).

Taking determinants gives

± tn det(tM " t! 1M T ) = ± det(tI) det(tM " t! 1M T )

= ± det(tI(tM " t! 1M T )) = ± det(M " t2M T )

as desired.
!

Corollary 3.31. If M is a Seifert matrix for a knot K , then
det(t

1
2 M " t! 1

2 M T ) is the Alexander polynomial forK .

Proof. Proposition 3.30 states that

det(M T " t2M ) = ± tn det(tM " t! 1M T ).

But # K (t2) = det(M " t2M T ) has only even powers of t in " . So

# K (t) = det(M T " tM ) = ± tk det(t
1
2 M " t! 1

2 M T )

where ± tk det(t
1
2 M " t! 1

2 M T ) is actually a polynomial in " .
Now ± tn is an invertible element in " . Thus # (K ) and det(t

1
2 M "

t! 1
2 M T ) generate the same ideal, namely the Alexander Ideal, in " . !

Remark 3.32. det(tM " t! 1M T ) can be thought of as # K (t2), or # K

with a change of variable t to t2. Thus establishing a result for det(tM "
t! 1M T ) in turn establishes a result for # K with a change of variable.
This relationship is very useful in the following sections.
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4. Conway and the Skein relation

The Seifert surface description and the original definition of the
Alexander polynomial o! er interesting insight, but are generally dif-
ficult routes to compute the Alexander polynomial. The result of Con-
way and the Skein relation is the most useful description for compu-
tation of the Alexander polynomial. The main result of this section is
theorem 4.3.

Definition 4.1. Let L be a knot or link. Define L+ , L ! and L0 by
isolating and changing one crossing of L as shown in figure 21.

Figure 21

Definition 4.2. A function f satisfies the Skein Relation if for any
knot or link L

f (L+ ) " f (L! ) = (t ! 1
2 " t

1
2 )f (L0).

Theorem 4.3. Any knot invariant satisfying the Skein relation and
has the value 1 on the trivial knot is the Alexander polynomial.

The structure of the proof is first to show that the Alexander poly-
nomial satisfies these properties. Then show that these properties com-
pletely define a knot invariant. However, the Skein relations heavily
rely on the use of links. Up until now, all of the results in this paper
have been for knots, and are not necessarily true for links. Since the
focus of this paper is knots, the following results about links will simply
be stated and not proved.

Definition 4.4. A splittable link is a link that can be separated by
a 2-sphere embedded in S3.

Lemma 4.5. If L is a splittable with at least two components, then
# L = 0.

A proof of this result can be found in [3] and [1], Corollary 9.17.

Theorem 4.6. The Alexander polynomial satisÞes the Skein relation
# (L+ ) " # (L! ) = (t ! 1

2 " t
1
2 )# (L0).( [3] pg 162)
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Proof. Let M+ , M! and M0 be Seifert surfaces constructed using Seifert’s
algorithm for L+ , L ! and L0 respectively, and N± be the open bicollars
on M± .

Consider cases on L+ , L ! and L0.

¥ Case 1: Suppose L+ is a split link. (The case if L! is a split
link is analogous.)

If L+ is a split link, then both L! and L0 are also split links.
By Lemma 4.5, # (L+ ) = # (L! ) = # (L0) = 0, so trivially
# (L+ ) " # (L! ) = (t ! 1

2 " t
1
2 )# (L0).

¥ Case 2: Suppose L0 is a split link, but L+ and L! are not split
links.

Then by Lemma 4.5 , # (L0) = 0. Now L+ , L ! and L0 are of
the form show in the figure.

Figure 22. crossings relations for L

Now, L+ is equivalent to L! by a 2! -twist, (this is proved
using grid diagrams in Proposition 5.5). Since # is a knot
invariant, then # (L+ ) = # (L! ) and so

# (L+ ) " # (L! ) = 0 = # (L0) = (t ! 1
2 " t

1
2 )# (L0).

¥ Case 3: Suppose L+ , L ! and L0 are all NOT split links.
Since M0 and M! were constructed using Seifert’s algorithm,

then M0 and M! di! er only locally by a half twist, as shown in
figure 23.

Let { [a1], á á á[an ]} be a basis for H1(M0) found by the algo-
rithm described in Remark 3.6. Now, ai & M! as each ai lies
in a part of the surface that is unchanged by the local crossing.
Let b be the cycle in M! that passes once through the added
half twisted band as shown in figure 23.

Claim: { [a1], á á á, [an ], [b]} is a basis for H1(M! ).
Now, up to homotopy type, M! = M0 ' S1. The Mayer

Vietoris Sequence of wedge products yields that H1(M! ) #=
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Figure 23

H1(M0) . H1(S1). Since bgenerates S1 then { [a1], á á á, [an ], [b]}
is a basis for H1(M! ).

Next, for any loop a in M± , denote a+ = N± (a, 1
2). Let

$i = lk(b, a+
i ),#i = lk(ai , b+ ) and ) = lk(b, b+ ). From this, the

Seifert matrix for M! is given below, where M0 is the Seifert
matrix for M0.

M! =

*

+
+
,

#1

M0
...

#n

$1 á á á $n )

-

.

.
/

Analogously, the Seifert surface for M+ will be M0 with an
extra twist in the opposite direction. The same argument gives
that { a1, á á á, an, c} is a basis for H1(M+ ), where c is the the
cycle that passes once through the added half twist analogously
to b in M! .

Claim: lk(c, c+ ) = ) " 1
By construction, b and c are basically the same cycle except

b passes through a negatively oriented half twist and c passes
through a positively oriented half twist. So, the linking numbers
lk(b, b+ ) and lk(c, c+ ) can only di! er at the local crossing in the
half twist, figure 24.

Consider only the crossing induced in the half twist. Now b
crosses over b+ , so no number is assigned to the over crossing.
However, c crosses under c+ , adding " 1 to the lk(c, c+ ). Thus
lk(c+ , c) = lk(b+ , b) " 1 = ) " 1. This proves the claim.

Next, let / (L) = det(tM " t! 1M T ). By the change of
variable t to t2, to show that # satisfies # (L+ ) " # (L! ) =
(t ! 1

2 " t
1
2 )# (L0), it su$ ces to show that / satisfies the relation

/ (L+ ) " / (L! ) = (t ! 1 " t)/ (L0), by Remark 3.32. So,

/ (L+ ) = det(tM+ " t! 1MT
+ ) =
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Figure 24

= det

*

+
+
,

t#1 " t! 1$1

tM0 " t! 1M0
...

t#n " t! 1$n

t$1 " t! 1#1 á á á t$n " t! 1#n t() " 1) " t ! 1() " 1)

-

.

.
/

= (t() " 1) " t ! 1() " 1)) det(tM0 " t! 1M0) + f (t2, $i , #j )

= (t() " 1) " t ! 1() " 1))/ (L0) + f (t2, $i , #j ).

Where f is a polynomial function of t2, $i and #j for i, j %
{ 1, á á á, n} . Similarly, with the same function f ,

/ (L! ) = det(tM ! " t! 1MT
! ) = (t) " t ! 1) )/ (L0) + f (t2, $i , #j ).

This gives the relation

/ (L+ ) " / (L! ) = (t() " 1) " t ! 1() " 1))/ (L0) " (t) " t ! 1) )/ (L0)

= (t) " t + t ! 1) " t ! 1 " t) + t ! 1) )/ (L0)

= (t ! 1 " t)/ (L0).

!

Next, we will show that a knot invariant satisfying the Skein relation
can be computed using only its value on the unknot. Thus, a knot
invariant is completely determined by the Skein relation and value on
the unknot. The following is based on Kau! man’s approach to Skein
theory in [6].

Let / be a knot invariant satisfying the Skein relation and has value
1 on the trivial knot.

Lemma 4.7. If L is a split link with at least two components, then
/ L = 0. ( [6] pg 20).

Proof. If L has 2 components, then up to isotopy L is as shown in Figure
25. / L must satisfy the Skein relation, so / L + " / L ! = (t ! 1

2 " t
1
2 )/ L 0 ,

for L+ and L! shown in Figure 25.
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Figure 25. crossings relations for L

Now, L+ is equivalent to L! by a 2! -twist, (this is proved using
grid diagrams in proposition 33). Since / is a knot invariant, then
/ L + = / L ! and so / L 0 = / L + " / L ! = 0.

Inductively, it follows that if L is a split link with n components,
then / L = 0, for all n %N.

!

Definition 4.8. A resolving tree for a knot K is a binary tree di-
agram with K at the root of the tree. At each stage of the tree one
crossing is isolated and changed according to the Skein relation so that
every triplet (parent, left child, right child) is of the form (K + , K 0, K ! )
or (K ! , K 0, K + ). Each node diagram may be replaced by an isotopic
diagram before applying the Skien relation. [3] pg 167

Now the following describes a recursive algorithm to calculate / for
knot K :

First create a resolving tree diagram for K . The terminal nodes
will be spilt links. By assumption, / is 1 on the unknot and / is
0 on split links by Lemma 4.7. Using the Skien relation, / K is a
linear combination of / applied to each terminal node. For ease of
computation, index the nodes of the tree.

An example calculation for the figure 8 knot from a resolving tree in
Figure 26 follows.

Now by assumption, / K 00 = / K ! = 1 as K 00 and K ! are the trivial
knot. By Lemma 4.7, / K 0! = 0 as K 0! is a split link. So, applying
the Skein relation to the bottom tier, we get:

/ K 0+ " / K 0 = (t ! 1
2 " t

1
2 )/ K 00

0 / K 0 = " (t ! 1
2 " t

1
2 ).

Then apply the Skein relation to the second tier to get:

/ K + " / K ! = (t ! 1
2 " t

1
2 )/ K 0
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Figure 26. Resolution tree for the figure 8 knot

0 / K + " 1 = " (t ! 1
2 " t

1
2 )(t ! 1

2 " t
1
2 )

0 / K + = 3 + t + t ! 1.
Thus giving that / of the figure eight knot is 3 + t + t ! 1.

5. Minesweeper matrix

The Minesweeper Matrix is another description of the Alexander
polynomial that is easy to compute. Grid diagrams are a representation
of knots and links that are used to describe the Minesweeper Matrix.
This section develops some basic theory of grid diagrams and then
describes the Minesweeper Matrix.

Definition 5.1. A grid diagram is a two dimensional square grid
such that each square within the grid is decorated with an x, o or is
left blank. This is done in a manner such that every column and every
row has exactly one x and one o decoration.

Definition 5.2. The grid number of a grid diagram is the number of
columns (or rows) in the grid.

See figure 27 for an example. This section follows the grid notation
by Manolescu, Ozsváth, Szabó and Thurston in [8] (see also [7]) with
the convention that the rows and columns are numbered top to bottom
and left to right, respectively.

A grid diagram is associated with a knot by connecting the x and
o decorations in each column and row by a straight line with the con-
vention that vertical lines cross over horizontal lines. These lines form
strands of the knot, and removing the grid leaves a projection of the
knot. As a result, grid diagrams represent particular planar projections
of knots. This process is illustrated in figure 28. The knot type of a
grid is the knot type of the knot associated with the grid.
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Figure 27. Example grid diagrams with grid numbers
3 and 5.

Figure 28

There are three grid moves used to relate grid diagrams: commuta-
tion, cyclic permutation and stabilization. These play a role analogous
to the Reidemeister moves for knot diagrams [9] . Following the nota-
tion from [8], the three grid moves are as follows:

(1) Commutation interchanges two consecutive rows or columns of
a grid diagram. This move preserves the grid number as shown
in figure 29. Even though commutation may be defined for any
two rows or columns, it is only permitted if the commutation
preserves the knot type of the grid. Throughout this section,
all discussed commutations preserve the knot type.

Figure 29. An example of column commutation

(2) Cyclic permutation preserves the grid number and removes an
outer row/column and replaces it to the opposite side of the
grid. See figure 30.

(3) Stabilization, also known as kink addition or removal, does not
preserve the grid number. A kink may be added to the right or
left of a column, and above or below a row. To add a kink to
column c, insert an empty row between the x and o markers of
the column c. Then insert an empty column to the right or left
of column c. Move either the x or o decoration in column c into
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Figure 30. An example of column permutation

the adjacent grid square in the added column. Complete the
added row and column with x and o decorations appropriately.
See figure 31. To add a kink to a row, switch the notions of
column and row. To remove a kink, follow these instructions
in reverse order. As shown, adding a kink increases the grid
number by 1 while removing a kink reduces the grid number by
1.

Figure 31. An example of stabililzation, kink addition

The following theorem, due to Cromwell [2] and Dynnikov [4], expli-
cates the relationship between grid diagrams, knots and the three grid
moves.

Theorem 5.3. (Cromwell [2], Dynnikov [4]) Let G1 be a grid diagram
representing knotK 1 and G2 be a grid diagram representing knotK 2.
K 1and K 2 are equivalent knots if and only if there exists a sequence of
commutation, stabilization and cyclic permutation grid moves to relate
G1 to G2.

In other words, the three grid moves form an equivalence relation on
the set of grid diagrams, and two grid diagrams are equivalent if and
only if they represent the same knot. The three grid moves play a role
similar to the Reidemeister moves for knot diagrams [9].

As a slight aside, theorem 4.6 required a property of knots that are
related by a 2! twist. This property is described and proved below.

Definition 5.4. Two knots K and L are related by a 2! twist if K
and L di! er in exactly one crossing as show in figure 32.
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Figure 32. 2! twist

Proposition 5.5. If two knots K and L di! er by a2! -twist then K =
L as knots.

Proof. Consider the grid diagrams associated to K and L , DK and DL

respectively. DK has a block of width n connected to another block by
two strands crossing once. n applications of cyclic permutation of the
first column relates DK to DL .

Figure 33. cyclic permutation n times

!

Theorem 5.6. [11] There exists a sequence of commutation and sta-
bilization grid moves to accomplish any cyclic permutation.

Proof. Figure 34 shows a sequence of stabilization and commutation
grid moves that accomplished a cyclic permutation move. !

Figure 34

Corollary 5.7. Two knot diagram represent the same knot type if and
only if there exists a sequence of commutation and stabilization grid
moves to relate the diagrams.
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5.1. Minesweeper Matrix.
Fix an orientation and grid diagram with grid number n for the knot.

Leave the grid behind the knot. Follow Seifert’s algorithm to create
the Seifert circles. At each interior intersection for the grid lines place
a wc, where wc is the wind of Seifert circle c that contains that grid
intersection. Calculate the wind of the circle in the following manner:

¥ Let wp
c be the partial wind for Seifert circle c.

¥ wp
c = 1 for a circle with a clockwise orientation.

¥ wp
c = " 1 for a circle with a counter-clockwise orientation.

¥ If circle c is not contained in another circle, let wc = wp
c .

¥ If circle c is contained in another circle (or circles) H , let wc =
wp

c + wH .

If a grid intersection lies outside the closed curves of the knot and
Seifert circles, then the wind of this intersection is 0 and twc= 1.

Remove the grid and the knot leaving behind only the added wc’s
in organized columns and rows. Create a matrix with entries twc and
add a row of 1’s and a columns of 1’s, see Figure 35. Hence there is a
matrix of dimension n by n. This matrix is called the Minesweeper
Matrix , denoted M .

Figure 35. Minesweeper matrix for the figure 8 knot

Theorem 5.8. [8] The Alexander polynomial for a knotk is
# k(t) = (1 " t)! (n! 1)det(M )

wheren is the grid number andM is the Minesweeper matrix.

To prove this theorem, it su$ ces to show that (1 " t)! (n! 1)M is a
knot invariant and satisfying the Skein relations. This will be proven
in separate pieces.

Note 5.9. The di! erence between any two neighboring twc ’s can be
only ± t± i (1 " t) or 0. If the two twc ’s are in the same Seifert circle or
both lie outside of a closed curve then their winds are the same and
the di! erence is 0. If the two twc ’s are in di! erent Seifert circle then
the inner Seifert circle’s wind,wci , can only be ± 1 more than than the
wind of outer Seifert circle, wco . Hence,
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twco - twci =twco - t (wco ± 1)=± twco (1 " t).
If one twc lies outside of a closed curve then it has a wind, wr , of

1. If the other lies inside a Seifert circle then it has a wind, ws, of
± 1. If ws=1 then tws " twr = t " 1 = " (1 " t). If ws = " 1 then
tws " twr = t ! 1 " 1 = t ! 1(1 " t).

Theorem 5.10. For Minesweeper MatrixM , (1 " t)! (n! 1)det(M ) is
a knot invariant.

Proof. By the Corollary 5.7, to prove (1" t)! (n! 1)M is a knot invariant,
it is enough to show that the M is invariant under the grid moves
commutation and stabilization.

¥ Commutation
Commuting two grid rows or columns corresponds to com-

muting two rows or columns in the matrix M . Commuting two
rows or columns in a matrix multiplies the determinant by " 1,
an invertible element in " .

¥ Stabilization or destabilization
Adding of removing a kink does not change the Seifert circles,

but rather changes their size or shape. So intuitively it is clear
that this would not change the Alexander polynomial.

Let M be a minesweeper matrix for a grid diagram for a
knot. When adding a kink, a new row and column are added to
the grid and contribute a new row and column to the matrix.
Call this new matrix M s. Within the grid, the new row and
column are completely di! erent from the neighboring rows and
columns. Within the knot and M s, the new row and column
only stretch the original Seifert circles and ultimately contribute
an almost identical row and column from M to M s. The new
row and column will di! er from an original row and column
from M in exactly one entry where the kink was added, hence
almost identical, see figure 36

Figure 36

Depending on the direction of the kink and the relative po-
sition of the original x and o, the new row and column will be
almost identical to di! erent rows and columns from M . The
reason for this almost identity is when the new row and column
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are added, all other rows and columns are extended through the
new row and column stretching the strands of the knot through
the new row and column in exactly same way as the neighbor-
ing rows and columns. So the grid square with the kink is the
only di! erent square.

Adding a multiple of a row to another row or a multiple of a
column to another column does not change the determinant. So,
for each direction of kink, subtract the almost identical column
from the new column. Every entry in the new column will cancel
to zero except the entry where the kink was added. Since the
two columns are consecutive, the entry with the kink will be
± t± i (1 " t), as proved in the Note 5.9. Similarly, subtract the
almost identical row from the new row. The same cancellation
will happen in every entry except the entry with the kink. Since
the new column was zeroed out, the almost identical row has
a zero in the entry of the intersection of the new column and
the almost identical row. Hence only a zero was added to the
kink entry leaving it unchanged. So M s has a row and column
of zeros except the intersection entry of the zeroed row and
column is ± t± i (1 " t).

To calculate the determinant of M s, use the expansion by
cofactors method. Expand by either the new row or column.
Since all but one entry is zero, the determinant of M s will be
± t± i (1 " t) times the determinant of the minor matrix created
by deleting the new row and column which is precisely the de-
terminant of M .

So, det(M s) = ± t± i (1 " t)det(M ).
And thus,

# k(t) = ± tj (1 " t)! (( n+1) ! 1)det(M s)

= ± tj (1 " t)! (( n+1) ! 1)(± t± i )(1 " t) det(M )

= ± t(j ± i )(1 " t)! (n! 1) det(M ).

!

Theorem 5.11. (1 " t)! (n! 1)det(M ) satisÞes the Skein relation and
has value 1 on the trivial knot.

Proof. Firstly, figure 37 shows a grid diagram and minesweeper matrix
for the trivial knot. Thus

(t " 1)n! 1 det(M ) = (t " 1)! 1(t " 1) = 1.
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Figure 37. Grid diagram, Seifert circle and
Minesweeper matrix for the trivial knot

Next, the Minesweeper matrix satisfies the Skein relation. To prove
this, consider how the grid diagram is changed under the crossing reso-
lutions, in figure 38, and compare minesweeper matrices for each grid.

Figure 38. Local segments of grid diagram correspond-
ing to di! erent crossing resolutions

Note that these local crossing resolutions only change the minesweeper
matrices in one row. Expanding the determinant along this row yields
comparable representations of the Minesweeper matrices that satisfy
the Skein relation. This tedious computation is very straight forward
and is presented nicely in [12] pg 13.

!
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